Superparamagnetic Nanoparticles for Atherosclerosis Imaging
نویسندگان
چکیده
The production of magnetic nanoparticles of utmost quality for biomedical imaging requires several steps, from the synthesis of highly crystalline magnetic cores to the attachment of the different molecules on the surface. This last step probably plays the key role in the production of clinically useful nanomaterials. The attachment of the different biomolecules should be performed in a defined and controlled fashion, avoiding the random adsorption of the components that could lead to undesirable byproducts and ill-characterized surface composition. In this work, we review the process of creating new magnetic nanomaterials for imaging, particularly for the detection of atherosclerotic plaque, in vivo. Our focus will be in the different biofunctionalization techniques that we and several other groups have recently developed. Magnetic nanomaterial functionalization should be performed by chemoselective techniques. This approach will facilitate the application of these nanomaterials in the clinic, not as an exception, but as any other pharmacological compound.
منابع مشابه
Synthesis of β-cyclodextrin conjugated superparamagnetic iron oxide nanoparticles for selective binding and detection of cholesterol crystals.
Water-soluble, β-cyclodextrin conjugated superparamagnetic nanoparticles have been constructed. These particles showed selective binding to cholesterol crystals, which opens the door for the detection of cholesterol crystal-related diseases such as atherosclerosis by magnetic resonance imaging (MRI).
متن کاملData on iron oxide core oil-in-water nanoemulsions for atherosclerosis imaging
The data presented in this article are related to the publication entitled "Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging" (Prévot et al., 2017) [1]. Herein we describe the synthesis and the characteristics of the Superparamagnetic Iron Oxide Nanoparticles (SPION) loaded inside nanoemulsions (NEs). Focus was set on obtaining SPION with narrow size d...
متن کاملDesign of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI)
Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity....
متن کاملHigh-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis.
BACKGROUND Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. METHODS AND RESULTS To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque ...
متن کاملPotential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times
Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...
متن کاملVisualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles.
OBJECTIVE Noninvasive imaging of atherosclerosis remains challenging in clinical applications. Here, we applied noninvasive molecular imaging to detect vascular cell adhesion molecule-1 in early and advanced atherosclerotic lesions of apolipoprotein E-deficient mice. METHODS AND RESULTS Ultrasmall superparamagnetic iron oxide particles functionalized with (P03011) or without (P3007) vascular ...
متن کامل